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During June to September 1992, a special campaign was held to measure rapid changes

in Earth's rotation rate and to relate these measurements to variations in the atmosphere's
angular momentum, due principally to changes in zonal winds. A strong rise in both length

of day and atmospheric momentum during a particular 6-day subperiod is documented, and
this example of a short-period perturbation is identified with a specific regional coupling

mechanism. Mountain torques within the southern tropics appear to account for most of
the rapid momentum transfer between the solid Earth and atmosphere, with those across
South America especially important.

Recent advances in the accuracy of space

geodetic techniques used to measure the

Earth's rotation, as well as the availability of

improved calculations of global atmospheric

angular momentum (AAM), have aided the

understanding of dynamic interactions

among the planet's solid portion, atmo-

sphere, and ocean. On time scales be-

tween roughly a fortnight and several years,

changes in the angular momentum of the

solid Earth, manifested as variations in the

length of day (1.o.d.), are almost entirely

accounted for by changes in AAM (1, 2).

Discrepancies in this balance at high fre-

quencies have been noted, and details of the

momentum exchange mechanisms have not

been fully understood. To address these is-

sues, a campaign was planned to determine

Earth orientation and AAM parameters

with the most accurate systems available.

This experiment, named SEARCH'92 (3),

was conducted from June to September

1992, with a special period of intensive

measurements held from 25 July to 8 August.

During the intensive portion of the cam-

paign, values of the relative component of

AAM about the polar axis due to winds,

M TM, and of the component due to the
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planet's mean rotation, M p, were computed

every 6 hours according to

MW = a3 g- l f _ _u cos2 ,:b dk dC dp (1)

MP = a4 _ g- l f f Ps COS3 qb dk dqb (2)

where a is Earth's mean radius; g is the

acceleration due to gravity; u is zonal wind;

a, _b, and p are longitude, latitude, and

pressure (Ps is pressure at Earth's surface),

respectively; and _ is Earth's mean angular

velocity. Integrals over the global atmo-

sphere were calculated from operational

wind and surface-pressure analyses pro-

duced by several of the world's weather

centers. These values were collected by the

Sub-bureau for Atmospheric Angular Mo-
mentum of the International Earth Rota-

tion Service for analysis and distribution

(4). During the intensive period of the

campaign, AAM appears to undergo a near-

ly 10-day oscillation superimposed on a

(seasonal) upward trend, as shown (Fig.

1A) by estimates from the U.S. National

Meteorological Center (NMC) using anal-

yses on a 2.5 ° latitude-longitude grid and 12

vertical pressure levels up to 50 mbar (5).

Although the oscillatory component is near

the high-frequency limit that generally ex-
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ists now in the measurement of coherent

fluctuations between AAM and l.o.d., the

changes captured in M w + 0.7 M p (6)

during the intensive period explain most

(64%) of the variance in simultaneous mea-

surements of l.o.d. (7) (Fig. 1A). Most of

this agreement is associated with changes in

Mw; during this period, fluctuations in M p
contribute little to the variance in l.o.d.

Therefore, study of the NMC daily wind-

based momentum data further to determine

the source and character of momentum

variability during the intensive period suf-

fices for a broad understanding of the

Earth's rotational behavior during that time
as well.

The relative angular momentum of the

atmosphere within 46 equal-area latitude

belts (8) was calculated from NMC zonal

wind analyses for the intensive period.

Upon subtraction of the means for that

period from all corresponding daily belt

values, we derived a time-latitude diagram

(Fig. 1B) of the temporal variability of belt
momentum anomalies. The relative contri-

bution of each belt to the behavior of M w in

Fig. 1A is shown in Fig. 1C in terms of the
fractional covariance between the time se-

ries of the individual belt and global M w

anomalies. Although a strong signal exists

near 45°S, the broad expanse of positive
covariance values in low-latitude Southern

Hemisphere belts, peaking near 10°S, indi-

cates that variations there are most respon-

sible for the M w fluctuations: The temporal

oscillation between negative and positive
anomalies at these latitudes mimics the

global behavior.

Although Fig. 1 isolates the important

centers of momentum variability during our

study period, it does not reveal the mecha-

nisms responsible for these variations. The

development of a new data set for the two

torques that link the atmosphere and Earth

(9) allows us an unprecedented opportuni-

ty, however, to identify the manner by

which the momentum exchange occurs on

the time scales dealt with here. One torque
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results from differences in normal pressure

forces across mountain barriers, effecting a

transfer of momentum from one component

to the other. The second torque arises from

tangential frictional stresses at the atmo-

sphere's lower boundary, which transfer
momentum with the land or ocean below.

If applied over the ocean, this stress can be

transmitted within a day or so to the solid
Earth through the development of sea-level

differences at the continental margins on
opposite sides of a basin, as the ocean

adjusts barotropically to the wind-forcing

field (10).
Global values of these two torques have

been computed four times per day for the

intensive period of SEARCH'92 as part of

an ongoing effort at NMC (11). Mountain
torque terms are calculated from the surface

pressure and topography fields, whereas fric-
tional stress torques are calculated from

the physical parameterizations of the fore-

cast model (12). Global values averaged

daily of these two torques are displayed in
Fig. 2. Mountain torques are positive dur-

ing most of the period and dominate the

frictional stress term, which is negative

and relatively steady throughout (13).
The sum of the mountain and stress

torques should, in principle, be identical

to the time derivative of global momentum.
The agreement in Fig. 2B, though very

good, is not perfect because momentum is
computed from the wind and pressure anal-

yses of the NMC system, whereas the torque

calculations involve a parameterization of

friction and other approximations, such as

the use of discrete temporal representations.

To study the character of the torques in

greater detail, we focus now on the 6-day

period from 31 July through 5 August,

when the total torque was at its peak,

corresponding in Fig. 1A to the time of the

most rapid rise in AAM. Of the two

torques, only the mountain one is positive

during this 6-day period, and it determines

the sign of the total torque. Hence, the

acceleration experienced by the global at-

mosphere during this period must be due

to interactions with Earth's topography.

Therefore, we examine the mountain torque

more closely by decomposing its global

mean value for 31 July to 5 August into
contributions made at individual latitudes

(Fig. 3A). During this period, the main

contribution to the global mountain

torque appears to come from the region

between the equator and 30°S (14).

The torque data set now available per-

mits us to isolate, in turn, which portions of

the 0 ° to 30°S region are most responsible

for the maximum there, and we do so by

dividing the region into three longitudinal

sectors on the basis of the distribution of

continents. The net mountain torque

across a landmass is generally the small

difference between large values of opposite

sign; its evaluation, therefore, involves a

sensitive calculation (15, 16). For the 6-day

period of rapid atmospheric acceleration

studied here, southern tropical Africa and

South America dominate (17) the transfer

of momentum from the solid Earth to the

atmosphere both within the Southern

Hemisphere tropics and, therefore from Fig.

3A, for the globe as a whole.

Fig. 1. (A) Comparison of relative
plus planetary AAM (thick solid
trace) and of relative momentum
alone (thin solid trace) with the
length of day during the intensive
period of SEARCH'92. The atmo-
spheric series are computed from
once daily (00 UTC) NMC analyses
of surface pressure and winds to the
50-mbar level and are reported here
in momentum units along the left as
well as equivalent I.o.d. units along
the right, with the planetary compo-
nent of momentum weighted by a
0.7 factor relating to the Earth's re-
sponse. The I.o.d. values (dotted
trace) are based on Very Long
Baseline Interferometry measure-
ments. Means have been removed
from all series. The straight dashed
lines in this and the next figure de-
note the period during which the
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atmosphere underwent a rapid acceleration and that we focus on to determine the mechanism
causing the acceleration. (B) Time-latitude diagram of the difference between the relative angular
momentum within 46 equal-area latitude belts during the intensive period of SEARCH'92 and the
mean for each belt during the period. Values, given _n1024 kg-m 2 s -1, are based on once daily (00
UTC) NMC winds to 50 mbar. Easterly (negative) anomalies are shaded. (C) Fractional covariance
of anomaly belt momentum values with M w, the global sum of the values during the intensive period.
The sum of the 46 numbers comprising the curve is unity.

408 SCIENCE • VOL. 264 • 15 APRIL 1994

The torques over South America in

particular appear to play a special role in

the explanation of much of the behavior of

the globally integrated mountain torque

during the 31 July to 5 August study period.

This result is evident from Fig. 3B, in
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Fig. 2. (A) Daily means of mountain (solid trace)
and friction (dashed trace) torques from the
NMC analysis-forecast system during the inten-
sive period of SEARCH'92. (B) Time derivative
of the relative plus planetary AAM (solid trace)
compared with the sum of mountain and friction
torques (dashed trace).
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Fig. 3. (A) Profile in latitude of the z()nal mean
mountain torque averaged during 31 July to 5
August 1992. The integral under the curve
equals the mean global mountain torque over
the period, that is, the mean for the mountain
torque curve in Fig. 2 over these 6 days. (B)
Four times daily series of mountain torque for
the globe (solid trace) and for three continental
regions in the 0 ° to 30°S band during 31 July to
5 August 1992: South America (thick dashed
trace), Africa (thin dotted trace), and East In-
dies-Australia (mixed dotted and dashed
trace).
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which we have plotted time series of the

global mountain torque and the torque

across continental portions of the 0 ° to 30°S

belt for this period. Although the torque

across the southern tropical portion of Af-

rica is on average larger than that across

tropical South America, the latter is much

better correlated in time with the global

torque, explaining 69% of the variance in

the global time series during these 6 days.

Indeed, when this comparison is extended

to all of South America, this proportion

rises to 88%. Fluctuations in torque with

time determine the shape of temporal vari-

ations in angular momentum, so from this

perspective conditions around South Amer-

ica during 31 July to 5 August 1992 were

especially important in determining the

character of AAM then.

The relative importance of mountain

versus friction torques in the planetary

momentum cycle appears to be a function

of time scale (18), and the dominance of

the former in our case study is consistent

with other studies of short-period changes

in AAM. Thus, the mountain torque was

more responsible for the variations ob-

served in AAM within the 2-month spe-

cial observing periods of the 1979 Global

Weather Experiment (16) and explains

much of the momentum anomaly observed

at the height of the E1 Nifio-Southern

Oscillation event in January 1983 (19).

Torques over land at submonthly periods

are more important than those over the

ocean, according to a recent study (20)

that included satellite-based measure-

ments of ocean stresses, and multiyear

simulations of the atmosphere's general

circulation (21) support this result. The

present case study, of course, illustrates an

instance when the mountain torque across

a single continent is highlighted.

Synoptic maps of mean sea-level pres-

sure based on NMC analyses reveal that a

strong high-pressure center moved to the

east of the Andes near the beginning of

August 1992, a shift that appears to ac-

count for the acceleration of the atmo-

sphere then. A strong zonal pressure gradi-

ent associated with this progression became

centered over the spine of the Andes on 1

August (Fig. 4), corresponding to the in-

crease in the acceleration of the atmosphere

that began on that day (Fig. 1). Investiga-

tion of the role of other synoptic events in

the global momentum budget will be part of

a more general study of "1- to 2-week"

waves in angular momentum evident

throughout much of our record. In these

studies, the manner in which various time

scales of behavior are separated can be

important in the interpretation of results.

For example, when trends are also removed

from the belt momentum series in Fig. 1B,

so as to isolate a 10-day fluctuation, varia-

tions near 40°S become much more crucial

for global M w variations than those near

10°S (as in Fig. 1C). Similarly, when mean

torques for the period are removed (equiv-

alent to the detrending of AAM), frictional

torques over 40°S must be invoked to help

account for the rising portion of the AAM

"wave," and contributions from mountain

torques over several regions besides those

highlighted here become more important.

Fig. 4. Maps of sea-level pressure,

in millibars, based on NMC analy-

ses in an area near South America

for 00 UTC on (A) 31 July and (B) 1

August 1992, just before and dur-

ing the peak acceleration of the

atmosphere. A high-pressure sys-

tem moves just to the east of the

Andes, resulting in a strong zonal

pressure gradient across the moun-

tainous topography.

10N

0

10S

20S

_- 50S

g'
4os

¢ t0N

_' o

A_ J <3 al auly1992

• :fill:: o_/

lOS

2os

50s

4os

100w 8ow 6ow 40w 20w

Longitude (degrees)

10.

• 11.

REFERENCES AND NOTES

1. R. D. Rosen, D. A. Salstein, T. M. Wood, J.

Geophys. Res. 95, 265 (1990); R. Hide and J. O.
Dickey, Science 253, 629 (1991).

2. Contributions of the oceans and core are small at
these time scales; those due to external tides can

be significant, but because they occur at specific,
well-known frequencies, they are easily isolated
and so are removed here.

3. J. O. Dickey, Adv. Space Res. 13, 185 (1993).

4. D. A. Salstein, D. M. Kann, A. J. Miller, R. D.
Rosen, Bull. Am. Meteorol. Soc. 74, 67 (1993).

5. C!ose agreement among AAM values from all the
meteorological centers helps to justify the use of a
single AAM series here. Although higher frequen-
cy data are available, the once daily values shown
in the figure are appropriate for representation of
the oscillation of interest.

6. The 0..7 factor applied to the pressure term in-
volves a Love number correction to account for

the response of the nonrigid, solid Earth to atmo-
spheric loading.

7. The measurement technique for the determination
of Earth's rotation here is Very Long Baseline
Interferometry [D. S. Robertson, W. E. Carter, J.
Campbell, H Schuh, Nature 316, 424 (1985)].

8. R. D. Rosen and D. A. Salstein, J. Geophys. Res.
88, 5451 (1983).

9. G. H White, in "Proceedings of the American
Geophysical Union Chapman Conference on
Geodetic VLBI: Monitoring Global Change," Nat.
Oceanic Atmos. Adm. Tech. Rep. NOS 137 NGS
49 (1991), p. 262.

R. M. Ponte, J. Geophys. Res. 95, 11369 (1990).

G. H. White, in "Research Activities in Atmospher-
ic and Oceanic Modeling," CAS/JSC Work. Group
Numer. Exp. Rep. no. 18 (World Meteorological
Organization, Geneva, 1993), 2.3-2.4.

12. In the NMC model, surface momentum exchange
is calculated with a bulk aerodynamic formula in
which the exchange is proportional to the vertical
momentum gradient, with the proportionality de-
pendent on wind speed and surface layer static
stability [M. Kanamitsu, Wea. Forecasting 4, 335
(1989)].

13. Friction torques over both ocean and land are
each negative, with mean values of -0.53 x 1019
and -1.46 x 1019 kg.m 2s -2, respectively, during
the intensive period.

14. Substantial frictional torques also transfer mo-

mentum into the Southern Hemisphere tropical
atmosphere, but these are more than compensat-
ed by negative frictional torques in the southern
extratropics.

15. J. M. Wahr and A. H. Oort, J. Atmos. Sci. 41, 190
(1984).

16. R. Swinbank, Q. J. R. Meteorol. Soc. 111, 977

(1985).

17. Mountain torques computed for southern tropical
portions of Africa, South America, and East In-
dies-Australia are 1.94 x 1019, 1.54 x 1019, and

-0.52 x 1019 kg.m 2 s 2, respectively, based on
the division of the 0° to 30°S region into sectors at
0°, 90°E, and 120°W longitudes.

18. R. D. Rosen, Surv. Geophys. 14, 1 (1993).

19. W. L Wolf and R. B. Smith, J. Atmos. Sci. 44, 3656
(1987).

20. R. M. Ponte and R. D. Rosen, J. Geophys. Res.
98, 7317 (1993).

21. G. J. Boer, ibid. 95, 5511 (1990).
22. We thank G. White of the NMC and D. Robertson

of the National Ocean Service for supplying
torque and I.o.d. data for this study, U. Kann for
valuable help in preparing the AAM data for this
period, and K. Cady-Pereira and P. Nelson of
Atmospheric and Environmental Research, Inc.,
for providing excellent programming support.
Supported by NASA under both its Geophysics
Program (contract NASW-4751) and Earth Ob-
serving System Program (contract NAGW-2615).

22 November 1993; accepted 24 February 1994

SCIENCE • VOL. 264 • 15 APRIL 1994 409


